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1
SYSTEMS AND METHODS FOR IMAGE
SEGMENTATION USING A DEFORMABLE
ATLAS

BACKGROUND

Image segmentation is often used to identify regions of
interest for use in medical image analysis. In particular, image
segmentation is used to segment structures from the back-
ground and is often used as a first step for medical image
analysis, such as for visualization, quantitative image analy-
sis, and image guided intervention.

Image segmentation can be difficult to perform because of
the large variability of shape and appearance of different
structures, including the lack of contrast between adjacent or
neighboring structures. Known image segmentation methods
are generally divided into image-based approaches and atlas-
based approaches. For example, image-based approaches
segment based on image cues including intensity, gradient,
and/or texture. Image based methods use different models
that perforin generally well when structures of interest have
prominent boundaries and the intensities of neighboring
structures are different. However, these methods often per-
form poorly when these conditions are not met. In particular,
it is often difficult to incorporate prior anatomical knowledge
into these image-based approaches especially when applied
to multi-structure segmentation.

Atlas-based approaches rely largely on prior knowledge
about the spatial arrangement of structures. These approaches
typically include first registering one or more manually seg-
mented images, called atlases, to the subject image, called
target, so that the manual segmentations on the atlases are
propagated and fused. Compared to image-based approaches,
these methods incorporate anatomical knowledge for
improved performance, but are limited by large anatomical
variation and imperfect registration.

Weighted fusion methods have also been proposed to
improve performance where the segmentation fusion is
weighted based on the intensity similarity between the target
and the atlas images. However, information about structure
intensity and contour that is specific to the subject’s anatomy
is not used, which makes it difficult to apply these methods to
subjects with large anatomical differences from the atlases.
Other methods have also been proposed and include an adap-
tive atlas method that allows large structure variation based
on target image intensities. However, adaptive atlas methods
do not consider structure boundary information, which means
these methods cannot discriminate different structures that
have similar intensities. Still other proposed methods use
spectral label fusion that divides the target image into regions
based on image intensities and contours, followed by voting
on the regions using an atlas-based approach. However these
methods are usually limited to a single anatomical region and
would be difficult to extend to segment multiple regions
simultaneously.

Thus, known segmentation methods suffer from different
drawbacks as a result of using such an image based
approaches or an atlas-based approaches.

BRIEF DESCRIPTION

In one embodiment, a non-transitory computer readable
storage medium for segmenting an image using a processor is
provided. The non-transitory computer readable storage
medium includes instructions to command the processor to
obtain one or more target images, obtain one or more propa-
gated label probabilities for the one or more target images,
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and segment the one or more target images using a cost
function of a deformable atlas model. The non-transitory
computer readable storage medium further includes instruc-
tions to command the processor to identify segmented struc-
tures within the one or more target images based on the
segmented target images.

In another embodiment, a Magnetic Resonance Imaging
(MRI) system is provided that includes an imaging portion
configured to acquire one or more target images of an object
and a processing portion configured to determine one or more
propagated label probabilities for the one or more target
images. The processing portion further includes a deformable
atlas module configured to segment the one or more target
images using a cost function of a deformable atlas model to
identify segmented structures within the one or more target
images based on the segmented target images.

In another embodiment, a method for image segmentation
is provided that includes obtaining one or more target images,
obtaining one or more propagated label probabilities for the
one or more target images, and segmenting the one or more
target images using a cost function of a deformable atlas
model. The method also includes identifying segmented
structures within the one or more target images based on the
segmented one or more target images.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram illustrating a process flow for image
segmentation in accordance with various embodiments.

FIG. 2 is a flowchart of a method for image segmentation in
accordance with an embodiment.

FIG. 3 illustrate exemplary brain images.

FIG. 4 illustrates images showing image segmentation
using different methods including a deformable atlas method
of various embodiments.

FIG. 5 is a graph showing segmentation results using dif-
ferent methods including a deformable atlas method of vari-
ous embodiments.

FIG. 6 illustrates images showing image segmentation
using different methods including a deformable atlas method
of various embodiments.

FIG. 7 is a block diagram of a Magnetic Resonance Imag-
ing (MRI) system formed in accordance with various embodi-
ments.

DETAILED DESCRIPTION

Various embodiments will be better understood when read
in conjunction with the appended drawings. To the extent that
the figures illustrate diagrams of the functional blocks of
various embodiments, the functional blocks are not necessar-
ily indicative of the division between hardware circuitry.
Thus, for example, one or more of the functional blocks (e.g.,
processors, controllers, or memories) may be implemented in
a single piece of hardware (e.g., a general purpose signal
processor or random access memory, hard disk, or the like) or
multiple pieces of hardware. Similarly, any programs may be
stand-alone programs, may be incorporated as subroutines in
an operating system, may be functions in an installed soft-
ware package, and the like. It should be understood that the
various embodiments are not limited to the arrangements and
instrumentality shown in the drawings.

As used herein, the terms “system,” “unit,” or “module”
may include a hardware and/or software system that operates
to perform one or more functions. For example, a module,
unit, or system may include a computer processor, controller,
or other logic-based device that performs operations based on
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instructions stored on a tangible and non-transitory computer
readable storage medium, such as a computer memory. Alter-
natively, a module, unit, or system may include a hard-wired
device that performs operations based on hard-wired logic of
the device. The modules or units shown in the attached figures
may represent the hardware that operates based on software
or hardwired instructions, the software that directs hardware
to perform the operations, or a combination thereof.

As used herein, an element or step recited in the singular
and proceeded with the word “a” or “an” should be under-
stood as not excluding plural of said elements or steps, unless
such exclusion is explicitly stated. Furthermore, references to
“one embodiment” are not intended to be interpreted as
excluding the existence of additional embodiments that also
incorporate the recited features. Moreover, unless explicitly
stated to the contrary, embodiments “comprising” or “hav-
ing” an element or a plurality of elements having a particular
property may include additional such elements not having
that property.

Various embodiments provide systems and methods for
multi-structure segmentation. In particular, various embodi-
ments provide a deformable atlas based segmentation that
uses image-based processing or methods and atlas-based pro-
cessing or methods. In some embodiments, a probabilistic
framework is solved that incorporates prior anatomical
knowledge with image cues that are specific to the target
images, including structure intensity profiles and boundaries.
The structure intensity distributions are modeled using kernel
density functions and the structure boundary information is
modeled in a way similar to deformable models and contrib-
utes to drive the segmentations toward the structure bound-
aries.

For example, one method formulates a probabilistic frame-
work that combines prior anatomical knowledge with image-
based cues that are specific to the subject’s anatomy, and
solves this framework using an expectation-maximization
(EM) method. In a brain application, for example, the multi-
structure segmentation of both normal and diseased brains
provides improved results, particularly in diseased brains.

At least one technical effect of various embodiments is
improved image segmentation over conventional image-
based or atlas-based segmentation methods. At least one tech-
nical effect of various embodiments is improved segmenta-
tion performance around the structure boundaries and a more
robust segmentation for large anatomical variation.

FIG. 1 illustrates a process flow 50 (or workflow) for a
multi-structure segmentation using a deformable atlas
approach in accordance with various embodiments. The pro-
cess flow 50 may be performed to segment a set of structures
from a given target image 52 using both the target image 52
and prior knowledge about the spatial arrangement of struc-
tures. The prior spatial knowledge can be generated in a
plurality of different methods, two of which will be now be
described. It should be noted that only one of these methods
may be used or a combination thereof.

The first method (Option 1) includes a multi-atlas approach
where a set of atlas images 54 are manually segmented and
independently registered to the target image 52. The manual
segmentations, or labels, are propagated (through a label
propagation process 56, such as known in the art) and com-
bined to generate propagated label probabilities 58, which in
some embodiments, includes generating spatial label proba-
bilistic maps on the target image 52 (e.g., showing possible
structures of interest). The second method (Option 2) uses a
spatial probabilistic atlas 60, where the spatial label probabi-
listic maps are generated in advance on the atlas image
domain and are propagated (through the label propagation
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process 56) to the target image 52 after registering (using a
registration process 62, such as known in the art) the (single)
atlas image 64 to the target image 52. It should be noted that
the process(es) or method(s) used to generate the propagated
labels may be any suitable process or method and is not
limited to the above-described methods. In general, any pro-
cess that can generate spatial label probabilistic maps on the
target image 52 may be used. Thus, the output from the above
described process provides propagated label probabilities for
the target image 52 (e.g., initial label or segment of structures
within the target image 52).

Thereafter, the propagated label maps, as well as the target
image 52 are input to a deformable atlas module 66 that
implements a process, method, or algorithm to segment all (or
a subset of) the structures in the target image 52 simulta-
neously or concurrently.

The deformable atlas module 66 then processes the input
data to generate segmented structures using multi-structure
segmentation as described in more detail herein. Specifically,
amethod 70 that may be performed to generate the segmented
structures 68 is shown in FIG. 2. In various embodiments, the
method 70, for example, may employ structures or aspects of
various embodiments (e.g., systems and/or methods) dis-
cussed herein. In various embodiments, certain steps may be
omitted or added, certain steps may be combined, certain
steps may be performed simultaneously, certain steps may be
performed concurrently, certain steps may be split into mul-
tiple steps, certain steps may be performed in a different
order, or certain steps or series of steps may be re-performed
in an iterative fashion. In various embodiments, portions,
aspects, and/or variations of the method 70 may be able to be
used as one or more algorithms to direct hardware to perform
operations described herein.

The method 70 includes obtaining one or more target
images at 72. For example, one or more Magnetic Resonance
(MR) T1-weighted images may be acquired using an MRI
system. It should be noted that different types of MR images
may be acquired and T1-weighted images are merely used as
an example. The MR images may be acquired using, for
example, any known MR imaging technique in the art. It also
should be noted that the various embodiments are not limited
to MR images, and may be used with other medical images or
non-medical images. Thus, for example, the various embodi-
ments may be implemented in medical or non-medical appli-
cations (e.g., inspection systems).

The method 70 also includes obtaining propagated label
probabilities at 74. For example, propagated label probabili-
ties may be obtained as described in more detail herein, for
example, as described in connection with FIG. 1.

With respect to steps 72 and 74, it should be noted that the
deformable atlas module 66 generally receives as inputs the
target image 52 and spatial priors about the structures. The
spatial priors may be generated using, for example, a multi-
atlas approach or a spatial probabilistic approach, which the
deformable atlas module 66 uses to segment the multiple
structures.

The method 70 also includes segmenting the target image
52 based on a cost function of a deformable atlas model at 76.
As described in more detail below, a deformable model based
term is used for multi-atlas based segmentation. In particular,
a probability of the deformable model based term (f(l])) is
determined at 76a as described below in more detail, such as
determining the log probability thereof (log f(r!I)). The deter-
mination based on the cost function of the deformable model
includes in some embodiments using an EM algorithm, which
iterates between the E-step (expectation step at 76aa) and the
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M-step (maximization step at 76ab). The details of the cal-
culations and determinations will now be described.

Initially, it should also be noted that in the described
embodiments, the target image 52 is denoted as I, where I, is
the image intensity at voxel j and je{1,2, . .., J}. The number
of structures to be segmented or the number of labels is
denoted as K. The true label at each voxel is represented by
z7[z,1, ..., Z|, where z;=1 if j belongs to structure k, and
0 otherwise. The label spatial prior is f(z)=p~[pj1, . . . , p,x]-
In a multi-atlas approach:

1 ‘
Pik = ﬁz Ly with L’J\-f(
=l

is the propagated label at j from the n” atlas and N is the
number of atlases.

Inaprobabilistic atlas approach, p, is the propagated spatial
prior after registration. In this embodiment, 6={p,t} is the set
of unknown parameters, where p={p,, . . . px} are the inten-
sity distribution functions for the K structures, and ni={m,}
with 7 is the probability that voxel j belongs to structure k
and for all j:

K _
P e

A general description of a deformable atlas method used in
various embodiments will now first be provided followed by
a more detailed description. The deformable atlas method of
various embodiments uses a maximum likelihood expecta-
tion (MLE) framework that combines label spatial prior
knowledge with image-based cues, such as intensities and
edges. In particular, using Bayes’ law, the likelihood function
is expressed as

AZIO=RZONZI0) <L Z PRI ZmAZI0)

SIZpnIDAZIm) (D
with the assumptions that p and 7 are independent, Z and p are
independent, and [ and Z are conditionally independent given
7. The term f(Z,11p) is based on the structure intensity profiles
in the target image 52, while f(z/I) models the distribution of
wt given | and is defined based on structure boundaries (as
described in more detail herein). Thereafter an EM algorithm
is used to solve for 6, which iterates between the E-step
(expectation step at 76aa) and the M-step (maximization step
at 76ab). Thus, in various embodiments, the E-step and
M-step are performed iteratively, such as performed or
repeated multiple times, which may be, for example, a deter-
mined or defined number of times, a number of times until a
convergence is met, etc.

In various embodiments, structure boundary information is
used. In particular, the log probability is defined as:

© K 2)
logf(r| I) = logCe "Zi=1F15) = JogC — 72 Fi(Se),
=1

where F/S,) is a potential energy function defined on the
boundaries S, of the k” structure segmented based on m,
which typically takes local minimum at edges along structure
contours. Additionally, in various embodiments, C is a nor-
malization constant.

In conventional deformable models, F(S,) often does not
have an analytical form and minimizing this model does not
lead to a closed-form solution. Instead, the model is opti-
mized iteratively by either guiding the contour deformation
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using force fields in active contours or evolving the level set
function using speed functions in level set methods.

In various embodiments, a pseudo level set function is
defined as follows:

BT 2
It should be noted that unlike standard level set functions, the
values for the pseudo level set function are constrained to [-1,
1]. In particular, ©,€(0, 1] when i is inside structure k, and
0,€[-1, 0)if i is outside structure k. As in level set methods,
the evolution of ©@(j) to maximize Equation 2 can be
expressed as follows:

q)jksu_q)jks:_yvj_vq)jk
with v, being a speed function, and s being the evolution step,
and which is equivalent to:

7 _ks+

L sy
i =T ==Yy Yy

€
under the condition that:

K _
e =1

In various embodiments, the gradient vector flow (GVF) is
used as the speed function. The GVF is computed from the
magnitude of target image gradient ||[Vx]|| instead of a binary
edge map, i.e., v/~GV F{V|[VxIj|[}. An example is shown in
FIG. 3, where the image 100 is a skull-striped brain T1 mag-
netic resonance (MR) image and the image 102 shows the
magnitude of GVF.

In this formulation, 7, only evolves in regions where cor-
responding labels are ambiguous based on spatial priors. For
regions with definite labels, the term V w;; in Equation 3
equals 0 and thus 7, does not evolve.

With respect specifically now to the E-step at 76aq, in this
step, the conditional expectation of the log likelihood func-
tion is computed. For example, let 0(t) be the set of estimated
parameters at iteration t. As in a standard EM algorithm, the
conditional expectation is

0016 = Elogf (11 Z, p)f(Z|2)} +logf (= | ) )

=D llogfU1Z, pfZIMIfEZI1, 69) + logf (x| )
z

Using Bayes’ law and assuming the labels and intensities at
voxels are independently distributed, the following results:

HAINDE 5
1_[ 1_[ LFU; |z, 6D p e Yok
Sz 6Nz
L INZENE) 3 T T 101 099ps)
Z ik
Thus at each voxel j the following is defined:
©)

[z =1, 9(’))ij
-

Y fUjzpe =1, 6M)py
K21

Wil = fle = 111,69) =

where w, is referred as the weighting variable.
The intensity distribution for structure k is defined as:

pk(t)(lj):f(lj 1Z;=1 69)
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Then, Equation 4 can be expressed as

016" =" 3" Togf (U 12ic = L pk) flzze = LIm) g +
Jik

logf(z| D)

DIR =1
R Ik

w(j'k)log]rjk +logf(n|1).

With respect specifically now to the M-step at 76ab, in this
step, the parameters 0“* are computed by maximizing

Qo10(1)).
In particular, to estimate p, the intensity distribution is
modeled using a Parzen window method as follows, where:

Z a;G(x; 1, o), where G(-; I}, o)
J

is the Gaussian kernel with mean I, and standard deviation
o-ay; are the coefficients such that:
Ejakj:1

By maximizing Equation 7, the following is derived:

1

WZ w}'k)G(x; Ij, o),

JkoJ

8
P = argmax )| willogoc(l)) =
Pr 7

I

] (1)
=l [ 3
ik

i+1
or a,((‘;r )

To estimate m, based on Equation 7, the following is
derived:

D = argm;lxz Z w(j'k)log]rjk +logf(m| ) ©
Jik

with the constraints:

Tp=1 for all j, or ¢i(m;y, - . . 7x)=1-Zw=0

As defined herein, the term log (i) does not have an
analytical form and thus Equation 9 does not have a closed-
form solution. Instead, Equation 9 is solved iteratively using
an extended gradient descent method in one embodiment. In
particular, let t =[x, . . ., J'ch]T , and the gradient is denoted
as:

gm)=V. 0016 ~[g;), . .. g

such that,

800169) v (10)
— == —yv;- V.

glmp) = i

Bﬂjk
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Because of the constraints, g(m;) is projected onto the
following constrained space:

Ve glm)

gN(ﬂk)=g(”k)—W Cj

or equivalently,

K (1D
ev(mp) = (@ i) —Z glmi)/ K.
=1
At iteration s, the following:
njk(t+l)s+l
is updated as:
njk(t+l)s+l_njk(t+l)SzégN(njk(t+l)S)' (1 2)

where 9 is the small step size, and:
njk(t+l )Oznjk(t)
Thereafter the following is normalized:
njk(t+l)s+l
to satisfy the constraint that:

Eknjk(t+l)s+1:1

until it converges or s > S;

zy = 1ifm D >, ¢+ for all i = k; otherwise 7, = 0 ;
t=t+1 ;

until the algorithm converges ort > T;

In one embodiment, the deformable atlas module 66 per-
forms the following:
Algorithm 1: The deformable atlas algorithm
Data: Target image I, prior spatial probability p;
Initialization: Set maximum iterations T and S, sett =0, ij(o) = njk(o) =
P
Compute v; using GVF and p? using Eqn. (8) ;
repeat
| The E-Step: compute ij(’) as in Eqn. (6);
| The M-Step: compute p,“+1 using (8), set s=0, njk(”l)o = ij(’);
| repeat
| | Compute njk(”l)”l using Eqn. (12) ;
| | Normalize njk(m)sn _ njk(m)sn 15 K njk'(t+l)s+l;
| | s=s+1;
I
I
I

Thus, referring again to FIG. 2, the deformable atlas algo-
rithm may be used to generate images with the segmented
structures at 78 (e.g., generate and display the target image 52
that has been segmented). As can be seen, and as described
herein, the last term in Equation 9 (log f(rtl])) is based on a
cost function of a deformable atlas model method. Addition-
ally, the iterative update in various embodiments is performed
by repeating the calculations in Equations 10-12.

Various embodiments were tested on Alzheimer’s disease
brains using the Australian Imaging, Biomarkers and Lif-
estyle (AIBL) data sets. For comparison, experiments were
performed using three methods: majority voting (MV), inten-
sity weighted voting (IWV), and deformable atlas as
described herein. For MV, the segmentation was determined
by fusing propagated label maps without considering image
cues, i.e.,j was labeled ask if p ,>p,, for Vi=k. IWV improves
MYV by considering structure-specific intensity profiles, i.e.,
the intensity weighting f(I1Z,p) in Equation 1 was applied, but
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the term for structure boundary f(tll) was ignored. For the
deformable atlas approach of various embodiments, both the
intensity weighting and the structure boundary term were
applied. The parameters were empirically selected: y=0.5 and
8=0.05. Moreover, o in Equation 8 was chosen as the intensity
standard deviation of all voxels in each structure. In all experi-
ments, the image registration was performed using SyN
method.

For Internet Brain Segmentation Repository (IBSR) data,
there were a total of 18 ISBR data and 18 experiments were
performed using a multi-atlas approach. For each experiment,
one image was selected as the target image and the other 17
images were used as the atlases. The segmentation results
were compared to the manual segmentation and evaluated
using the Dice coefficient, i.e., D=2IXNY/IXUY| where X
and y are the voxel sets of manual labeling and automated
segmentation result, respectively, and |*| is the set cardinality.
FIG. 4 shows the qualitative results on two data sets, and FIG.
5 shows the quantitative results for all structures. It should be
noted that left and right structures are combined for clarity.

FIG. 4 shows the results performed using the IBSR data set,
which contains 18 healthy subjects with T1 weighted images,
and 32 brain structures were manually delineated on each
image by experts. In particular, the images 120, 122 are
T1-weighted coronal slices, the images 124, 126 are results
from ground truth analysis, the images 128, 130 are results
from MV analysis, the images 132, 134 are results from [WV
analysis, and the images 136, 138 are results using various
embodiments. The improvements are illustrated by the circles
that show the corresponding regions on each of the images. As
can be seen, using various embodiments, better segmentation
of structures within the brain, particularly within the circle
regions, is provided.

Moreover, as can be seen in the graph 140 of FIG. 5, ITWV
performed better than MV in most structures, which demon-
strated the effectiveness of incorporating intensity into the
voting strategy. Using the deformable atlas approach of vari-
ous embodiments further improved the results, especially in
the ventricles and the cortex, and also performed better or
similarly on other structures.

Various methods were also performed on 45 AIBL images
having Alzheimer’s disease with the 18 IBSR data as the
atlases. The results are shown in FIG. 6 wherein the images
150, 152, 154 are the T1-weighted images, the images 156,
158, 160 are the results of MV analysis, the images 162, 164,
166 are the results of ITW analysis, and the images 168, 170,
172 are the results using various embodiments. The images
are the results for three subjects. As can be seen, particularly
in the circled regions, the deformable atlas approach consis-
tently performs better than MV and IWV by identifying more
structures.

In particular, because the diseased brains have large ana-
tomical changes as compared to normal brains, e.g., brain
tissue shrinkage and ventricle enlargement, and the atlas
images were all on normal brains, these pathological difter-
ences were not captured by the registration algorithm and
resulted in failure of MV and IWV on certain parts of the brain
(circled regions in FIG. 6). However, the deformable atlas
approach of various embodiments performed well despite the
anatomical changes, based in part on the edge-based defor-
mation. These results illustrate that the deformable atlas
method of various embodiments may be applied to brains
with large deformation that may not be properly segmented
using, for example, voting based methods.

Thus, in various embodiments, a deformable atlas method
for multi-structure segmentation is provided that combines
atlas-based and image-based approaches, and applies the
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method, for example, to segment both normal brains and
brains with Alzheimer’s disease. However, it should be appre-
ciated that the various embodiments may be implemented
with different structures or organs. For example, the results
described herein show that various embodiments performed
well particularly for diseased brain in spite of large anatomi-
cal deformation while other segmentation methods failed.
However, the various embodiments can be readily extended
to other applications, such as of atlas-based segmentation,
e.g., prostate and heart.

It should be noted that although the various embodiments
are described in connection with a multi-atlas approach, the
various embodiments may be applied, for example, to proba-
bilistic atlas approaches. It also should be noted that varia-
tions and modifications are contemplated, for example, to
include other speed functions, including curvature-based
terms for smoothness.

Accordingly, various embodiments provide image seg-
mentation, wherein the resulting images may be used, for
example, in medical diagnosis. The various embodiments
may be implemented in connection with an MRI system 220
as shown in FIG. 7, which may be used to acquire MRI data
that is segmented to generate images as described herein.
Thus, the MRI system 220 may be utilized, for example, to
implement the method 70 described herein.

In the exemplary embodiment, the MRI system 220
includes a superconducting magnet 222 formed from mag-
netic coils that may be supported on a magnet coil support
structure. However, in other embodiments, different types of
magnets may be used, such as permanent magnets or electro-
magnets. A vessel 224 (also referred to as a cryostat) sur-
rounds the superconducting magnet 222 and is filled with
liquid helium to cool the coils of the superconducting magnet
222. A thermal insulation 226 is provided surrounding the
outer surface of the vessel 224 and the inner surface of the
superconducting magnet 222. A plurality of magnetic gradi-
ent coils 228 are provided within the superconducting magnet
222 and a transmitter, for example, an RF transmit coil 230 is
provided within the plurality of magnetic gradient coils 228.
In some embodiments the RF transmit coil 230 may be
replaced with a transmit and receive coil defining a transmit-
ter and receiver.

The components described above are located within a gan-
try 232 and generally form an imaging portion 234. It should
be noted that although the superconducting magnet 222 is a
cylindrical shaped, other shapes of magnets can be used.

A processing portion 240 generally includes a controller
242, a main magnetic field control 244, a gradient field con-
trol 246, a display device 248, a transmit-receive (T-R) switch
250, an RF transmitter 252 and a receiver 254. In the exem-
plary embodiment, a deformable atlas module 260, which
may be embodied as the deformable atlas module 66 (shown
in FIG. 1), may be implemented as a tangible non-transitory
computer readable medium, and is programmed to segment
images as described in more detail herein.

In operation, a patient is inserted into a bore 236 of the MRI
system 220. The superconducting magnet 222 produces an
approximately uniform and static main magnetic field B,
across the bore 236. The strength of the electromagnetic field
in the bore 236 and correspondingly in the patient, is con-
trolled by the controller 242 via the main magnetic field
control 244, which also controls a supply of energizing cur-
rent to the superconducting magnet 222.

The magnetic gradient coils 228, which include one or
more gradient coil elements, are provided so that a magnetic
gradient can be imposed on the magnetic field B, in the bore
236 within the superconducting magnet 222 in any one or
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more of three orthogonal directions x, y, and z. The magnetic
gradient coils 228 are energized by the gradient field control
246 and are also controlled by the controller 242.

The RF transmit coil 230, which may include a plurality of
coils (e.g., resonant surface coils), is arranged to transmit
magnetic pulses and/or optionally simultaneously detect MR
signals from the patient if receivers, such as receive coil
elements are also provided, such as a surface coil (not shown)
configured as an RF receive coil. The RF transmit coil 230 and
the receive surface coil are selectably interconnected to one of
the RF transmitter 252 or the receiver 254, respectively, by the
T-R switch 250. The RF transmitter 252 and T-R switch 250
are controlled by the controller 242 such that RF field pulses
or signals are generated by the RF transmitter 252 and selec-
tively applied to the patient for excitation of magnetic reso-
nance in the patient.

Following application of the RF pulses, the T-R switch 250
is again actuated to decouple the RF transmit coil 230 from
the RF transmitter 252. The detected MR signals are in turn
communicated to the controller 242. The detected signals are
then utilized to determine electrical properties of the object
(e.g., patient) being imaged. The processed signals represen-
tative of an image are also transmitted to the display device
248 to provide a visual display of the image.

The various embodiments may be implemented in connec-
tion with different types of superconducting coils, such as
superconducting coils for an MRI system. For example, the
various embodiments may be implemented with supercon-
ducting coils for use with an MRI system 220 shown in FIG.
7. It should be appreciated that although the system 220 is
illustrated as a single modality imaging system, the various
embodiments may be implemented in or with multi-modality
imaging systems. The system 220 is illustrated as an MRI
imaging system and may be combined with different types of
medical imaging systems, such as a Computed Tomography
(CT), Positron Emission Tomography (PET), a Single Photon
Emission Computed Tomography (SPECT), as well as an
ultrasound system, or any other system capable of generating
images, particularly of a human. Moreover, the various
embodiments are not limited to medical imaging systems for
imaging human subjects, but may include veterinary or non-
medical systems for imaging non-human objects, luggage,
etc.

It should be noted that the particular arrangement of com-
ponents (e.g., the number, types, placement, or the like) of the
illustrated embodiments may be modified in various alternate
embodiments. In various embodiments, different numbers of
a given module or unit may be employed, a different type or
types of a given module or unit may be employed, a number
of modules or units (or aspects thereof) may be combined, a
given module or unit may be divided into plural modules (or
sub-modules) or units (or sub-units), a given module or unit
may be added, or a given module or unit may be omitted.

It should be noted that the various embodiments may be
implemented in hardware, software or a combination thereof.
The various embodiments and/or components, for example,
the modules, or components and controllers therein, also may
be implemented as part of one or more computers or proces-
sors. The computer or processor may include a computing
device, an input device, a display unit and an interface, for
example, for accessing the Internet. The computer or proces-
sor may include a microprocessor. The microprocessor may
be connected to a communication bus. The computer or pro-
cessor may also include a memory. The memory may include
Random Access Memory (RAM) and Read Only Memory
(ROM). The computer or processor further may include a
storage device, which may be a hard disk drive or a removable
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storage drive such as a solid state drive, optical drive, and the
like. The storage device may also be other similar means for
loading computer programs or other instructions into the
computer or processor.

As used herein, the term “computer,” “controller,” and
“module” may each include any processor-based or micro-
processor-based system including systems using microcon-
trollers, reduced instruction set computers (RISC), applica-
tion specific integrated circuits (ASICs), logic circuits, GPUs,
FPGAs, and any other circuit or processor capable of execut-
ing the functions described herein. The above examples are
exemplary only, and are thus not intended to limit in any way
the definition and/or meaning of the term “module” or “com-
puter.”

The computer, module, or processor executes a set of
instructions that are stored in one or more storage elements, in
order to process input data. The storage elements may also
store data or other information as desired or needed. The
storage element may be in the form of an information source
or a physical memory element within a processing machine.

The set of instructions may include various commands that
instruct the computer, module, or processor as a processing
machine to perform specific operations such as the methods
and processes of the various embodiments described and/or
illustrated herein. The set of instructions may be in the form of
a software program. The software may be in various forms
such as system software or application software and which
may be embodied as a tangible and non-transitory computer
readable medium. Further, the software may be in the form of
a collection of separate programs or modules, a program
module within a larger program or a portion of a program
module. The software also may include modular program-
ming in the form of object-oriented programming. The pro-
cessing of input data by the processing machine may be in
response to operator commands, or in response to results of
previous processing, or in response to a request made by
another processing machine.

As used herein, the terms “software” and “firmware” are
interchangeable, and include any computer program stored in
memory for execution by a computer, including RAM
memory, ROM memory, EPROM memory, EEPROM
memory, and non-volatile RAM (NVRAM) memory. The
above memory types are exemplary only, and are thus not
limiting as to the types of memory usable for storage of a
computer program. The individual components of the various
embodiments may be virtualized and hosted by a cloud type
computational environment, for example to allow for
dynamic allocation of computational power, without requir-
ing the user concerning the location, configuration, and/or
specific hardware of the computer system.

Itis to be understood that the above description is intended
to be illustrative, and not restrictive. For example, the above-
described embodiments (and/or aspects thereof) may be used
in combination with each other. In addition, many modifica-
tions may be made to adapt a particular situation or material
to the teachings of the invention without departing from its
scope. Dimensions, types of materials, orientations of the
various components, and the number and positions of the
various components described herein are intended to define
parameters of certain embodiments, and are by no means
limiting and are merely exemplary embodiments. Many other
embodiments and modifications within the spirit and scope of
the claims will be apparent to those of skill in the art upon
reviewing the above description. The scope of the invention
should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled. In the appended claims, the
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terms “including” and “in which” are used as the plain-En-
glish equivalents of the respective terms “comprising” and
“wherein.” Moreover, in the following claims, the terms
“first,” “second,” and “third,” etc. are used merely as labels,
and are not intended to impose numerical requirements on
their objects. Further, the limitations of the following claims
are not written in means-plus-function format and are not
intended to be interpreted based on 35 U.S.C. §112, sixth
paragraph, unless and until such claim limitations expressly
use the phrase “means for” followed by a statement of func-
tion void of further structure.

This written description uses examples to disclose the vari-
ous embodiments, and also to enable a person having ordi-
nary skill in the art to practice the various embodiments,
including making and using any devices or systems and per-
fotining any incorporated methods. The patentable scope of
the various embodiments is defined by the claims, and may
include other examples that occur to those skilled in the art.
Such other examples are intended to be within the scope of the
claims if the examples have structural elements that do not
differ from the literal language of the claims, or the examples
include equivalent structural elements with insubstantial dif-
ferences from the literal languages of the claims.

What is claimed is:

1. A non-transitory computer readable storage medium for
segmenting an image using a processor, the non-transitory
computer readable storage medium including instructions to
command the processor to:

obtain one or more target images;

obtain one or more propagated label probabilities for the

one or more target images;

segment the one or more target images using a cost func-

tion of a deformable atlas model; and

identify segmented structures within the one or more target

images based on the segmented one or more target
images;

wherein the deformable atlas model utilizes structure

boundary information to take local minimum intensities
at edges along a structure contour;

wherein the instructions command the processor to use the

following to segment the one or more images:

D = argm;lxz Z w(j'k)log]rjk +logf(m| )
Jik

wherein log £ (wl]) is a deformable atlas model term.

2. The non-transitory computer readable storage medium
of claim 1, wherein the instructions command the processor
to perform an Expectation-Maximization (EM) algorithm for
the cost function.

3. The non-transitory computer readable storage medium
of claim 2, wherein the EM algorithm is performed itera-
tively.

4. The non-transitory computer readable storage medium
of claim 1, wherein the instructions command the processor
to determine a log probability for the deformable atlas model.

5. The non-transitory computer readable storage medium
of claim 1, wherein the instructions command the processor
to perform a multi-atlas based segmentation using the cost
function of the deformable atlas model.

6. The non-transitory computer readable storage medium
of claim 1, wherein the instructions command the processor
to use an intensity weighting and a structure boundary term
for the deformable atlas model.
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7. A Magnetic Resonance Imaging (MRI) system compris-
ing:

an MRI imaging system to acquire one or more target
images of an object; and

a processor to determine one or more propagated label
probabilities for the one or more target images, the pro-
cessing portion further comprising a deformable atlas
module to segment the one or more target images using
a cost function of a deformable atlas model to identify
segmented structures within the one or more target
images based on the segmented one or more target
images; wherein the deformable atlas model utilizes
structure boundary information to take local minimum
intensities at edges along a structure contour

wherein the deformable atlas module is a tangible non-
transitory computer readable medium that further uses
the following to segment the one or more images:

2D = argm;lxz Z w}'k)log]rjk +logf(m| 1)
J k

wherein log £ (wl]) is a deformable atlas model term.

8. The MRI system of claim 7, wherein the deformable
atlas module further performs an Expectation-Maximization
(EM) algorithm for the cost function.

9. The MRI system of claim 8, wherein the EM algorithm
is performed iteratively.

10. The MRI system of claim 7, wherein the deformable
atlas module further determines a log probability for the
deformable atlas model.

11. The MRI system of claim 7, wherein the deformable
atlas module further performs a multi-atlas based segmenta-
tion using the cost function of the deformable atlas model.

12. The MRI system of claim 7, wherein the deformable
atlas module further uses an intensity weighting and a struc-
ture boundary term for the deformable atlas model.

13. A method for image segmentation, the method com-
prising:

obtaining one or more target images;

obtaining one or more propagated label probabilities for

the one or more target images;

segmenting the one or more target images using a cost

function of a deformable atlas model; and

identifying segmented structures within the one or more

target images based on the segmented one or more target
images;

wherein the deformable atlas model utilizes structure

boundary information to take local minimum intensities
at edges along a structure contour;

wherein the deformable atlas module further uses the fol-

lowing to segment the one or more target images:

1 ®
2D argmﬂaxz Zk: wlogr  +logf (x| 1)
4

wherein log f(nl]) is a deformable atlas model term.

14. The method of claim 13, further comprising perform-
ing an Expectation-Maximization (EM) algorithm for the
cost function.

15. The method of claim 14, wherein the EM algorithm is
performed iteratively.

16. The method of claim 13, further comprising determin-
ing a log probability for the deformable atlas model.
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17. The method of claim 13, further comprising perform-
ing a multi-atlas based segmentation using the cost function
of the deformable atlas model.

18. The method of claim 13, further comprising using an
intensity weighting and a structure boundary term for the 5
deformable atlas model.
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